
Open Source and the
Spatial Web

Paul Ramsey
Boundless

pramsey@boundlessgeo.com

paul ramsey

My name is Paul Ramsey

I'm the product manager for the OpenGeo Suite from
Boundless, which is commercially supported open
source software for building spatial web apps

I'm also a long time open source developer.

postgis
open source

spatial database

I founded the PostGIS open source spatial database
project 13 years ago, and have been actively involved
in it every since.

open source spatial web

Today I'm going to talk about three big users of open
source web tools,
<x> the City of New York,
<x> the Portland regional transit authority TriMet,
<x> and the Federal Communications Commission.
Three levels of government (municipal, regional,
federal),
who all built high trafc, public facing
web services and applications on an open source
platform.

open source

First, open source.
Open source deserves some words of explanation,
because it's not widely understood outside of the
technology arena
(and often not even there).

Open source software is software that is distributed
with three basic conditions:

to share

to modify

to share
 modifcations

free

free

free

the recipients are free to share the software with others
<x> the recipients are free to modify the software if
they wish
<x> the reciptents are free to share their modifed
software with others

to modifyfree free free

Because all open source software comes with these
special freedoms,
it is sometimes interchangeably called "free software",

to share

to modify

to share
 modifcations

free

free

free

but the reference is not to price it's to the three
freedoms.

Open source is a relatively new concept,

richard stallman

1985

it was "invented" from a software perspective by
Richard Stallman in the 1980s.

But it’s not a new idea,
it's worth noting, that the three freedoms are also the
basis of Western science:

discover
publish
verify results

this is science

publish

when you discover an interesting scientifc result you
<x> publish, to share your results with others,
<x> who verify them, advance them, improve them,
<x> and in turn share their results with others.

G
N
U

NU’s
ot
NIX

Stallman and his early followers in the 80s built the
frst substantial collection of open source software for
what they called
<x> the GNU operating system (GNU is a recursive
acronym that stands for
<x> "GNU's not UNIX", see the recursion?)

 ’s
Not
UNIX

GNU’s
Not
UNIX

 ’s
Not
UNIX

 ’s
Not
UNIX

GNU’s
Not
UNIX libraries

compilers

shells

code editors

kernel

They built all the components of an operating system.
Standard libraries, compilers, shells, code editors,
everything except the bit that talked to the underlying
hardware, the "kernel".

For his work on GNU and open source, Stallman
received a Macarthur genius award.

But, I think he'd probably give it back to trade places
with this next guy.

In 1991, frustrated by the lack of a UNIX operating
system for his fancy new intel 386 computer (bought
with christmas money from his grandmother)

linus torvalds

1991

Linus Torvalds wrote a kernel for the GNU operating
system, and posted it online.
It became an overnight success,
bringing the GNU UNIX platform to
inexpensive intel hardware perfect for individual
developers.

1991

FAQ,
enthusiasts

In four months, it is so popular an F.A.Q. has been
written to handle the common questions.

1991

individuals
spare time
hobbyists

distributors
package and
sell CDROMS

1992

In a year, packagers were selling Linux DVDs that
combine the Linux kernel with the GNU software tools.

1991

individuals
spare time
hobbyists

distributors
package and
sell CDROMS

1992

1994

DEC gets
Alpha port,
Sun gets

Sparc port

In three years, big UNIX operators like DEC and Sun
were sponsoring ports of Linux to their hardware.

1991

individuals
spare time
hobbyists

distributors
package and
sell CDROMS

1992

1994

DEC gets
Alpha port,
Sun gets

Sparc port

Red Hat
Linux

formed

1995

In four years, Red Hat had been founded, a future $2B
open source concern.

1991

individuals
spare time
hobbyists

distributors
package and
sell CDROMS

1992

1994

DEC gets
Alpha port,
Sun gets

Sparc port

1998

Linux
rules

internet

Red Hat
Linux

formed

1995

By 1998 the internet explosion was in full swing
powered by hundreds of thousands of commodity
servers running Linux.

Microsoft was drafting strategy memos about how to
counter Linux,
and Linus Torvalds is featured on the front page of
Forbes magazine

That's seven years from prototype code to industry
realignment.

All without a marketing department, without licensing,
without sales,
without ownership or control.

not just
linus

torvalds

Oviously, Linus didn't achieve all that alone.

He achieved it working with ...

a huge community of like-minded developers who
shared his goals.
But why would they share their work with Linus?

linux is
open source to modify

to share
 modifcations

free

Because Linus released Linux under an open source
license.

to modify

to share

to share
 modifcations

free

free

free

And the three freedoms meant that developers knew
that any work they added to Linux would always be
available to them. Linus couldn't just walk away with it.

open source
creates an
intellectual
commons

Open source sets up "intellectual commons" that can
never be fenced of or alienated.
People are willing to contribute to a commons in ways
they are not willing to contribute to a private
intellectual pool.
People pull weeds in the community garden, they don't
do it in my front yard. (Which is a shame, I think.)
Open source software is not an isolated example of
this dynamic. The arrival of the internet has caused
numerous "intellectual commons" to spring up.

Last year, after a couple hundred years of publishing,
the Encyclopdiea Britannica announced that they
wouldn't be printing encyclopedias anymore.

“hey buddy,
 wanna buy an
 encyclopedia?”

Not because they'd been put out of business by
encyclopedia theft, or encyclopedia copying, or
anything like that.
They've just been outcompeted. And not by the World
Book, or National Geographic.

By a decentralized community of writers working
together to build an intellectual commons around
factual knowledge.

By Wikipedia. An online intellectual commons.
It's not like Britannica didn't see it coming,
but they couldn't stop it.

wiki.britannica.comwikipedia.org

They couldn't set up wiki.britannica.com, because
people wouldn't contribute to it.
People don't like giving their work to other people for
free.
<x> But they give it to Wikipedia, why?

Look at the license Wikipedia uses for its content, the
"Creative Commons" license.
It's basically an open source license.
You’re free to share, to modify, and to share
modifcations of Wikipedia content.

How about an example from our own feld...

Almost all geographic data in the UK is collecfted by
the Ordnance Survey, and they sell it. If you don't have
money, you can't have it.

A couple British university students got annoyed at
that.
So the students started an intellectual commons for
map data, and called it Open Street Map.

It started of small, but it grew quickly because it flled an
important need. First in places like the UK, Germany and
India, where map access was expensive or illegal.

Then in places like Canada, where it provides a more up-
to-date view of the world than institutional mapping.

I recently had the pleasure of getting lost on the South
Fraser Connector after getting of the ferry.

This is a multi-billion dollar infrastructure addition that
has been underway for years, it’s not some new culdesac.

apple

Here's the view of the connector from Apple (it doesn't
even exist)

bing

And Bing Maps (doesn’t exist there either)

google

Google’s got it (though some of the lines seem
tentatively colored)

openstreetmap

And openstreetmap of course has it.

So, open source is just the "software" aspect of a new
way of building knowledge,

where communities of interest collaborate over the
internet
and build things that previously required large
institutions to create

it's like magic, but it's not,
it's the combination of,

shared interests
rules for sharing
communications tech

shared interests in the work products
<x> rules for sharing that put everyone on an equal
footing (like open source licenses or creative
commons)
<x> and internet communications technology to join
everyone together.

open source
is the

new normal

Open source style collaboration is not an aberration,
it's not a new fad, it's the new normal.

Certainly open source SOFTWARE is now completely
ubiquitous,
to the extent that I have to actually point it out. You
got up this morning,

- Turn on Android smart phone? Open source. (OS
kernel of iPhone is also open source.)

- Searched Google? Wouldn't exist without open
source. Hundreds of thousands of Linux servers.

- Checked Facebook? Same story. Both using existing
OSS tech, and releasing new OSS tech.

- Packets traversed your wireless router. Open source.

- Adjusted Nest thermostat? Open source. - Put dinner in the crock pot? Open source.

- Watched a movie on the plane? Open source.

So, in the internet service and embedded device spaces
in particular,
open source is ubiquitous.

How about in our world? In the municipal, regional
geo-world?
Less ubiquitous, for sure. But why is that?

#1
we go with

what we know

Well,
First of all,
People go with what they know, that's normal.
And what people know is something they frst bought
15 years ago
and have just kept on buying,
usually ESRI, sometimes something else.

#2

open source
learning curve

Second,
Open source can have an intimidating learning curve.
(In fact, one of our corporate goals as Boundless is to
flatten that curve,
as our CEO says “our job is to reduce the cost of free
software")

#3

no marketing department

And third,
Open source has no marketing department.
So proprietary stories dominate our marketplace of
ideas,

Which means people don't always talk about web
mapping in a generic sense,

“you need something
that does ____”

they don’t say
"you need these capabilities", or
“you need something that does THIS”
they adopt a shorthand

“you need the
Whurligizmo™”

and start talking about capabilities
in terms of proprietary products or product analogues

But architecturally, you'll get better designs if you
model your system in terms of generic capabilities, and
then fgure out what product mix fulflls your needs.

the
parts of a
web map

Here are the functional parts of a web map.
These are common to every web map,
whether it be Google Maps or Bing,
an open source solution or an ESRI one.

raw data storage

Somewhere back on a server there will be some raw
data,
vectors and imagery, it might be in fles or in a
database for easy random access.

rendering service

That raw data gets converted to cartographic output
by a map server. So raw data goes in, and colorful
images come out.

caching service

In order to speed up web maps,
the cartographic output is often cut up into "tiles" and
stored in a "tile cache".

So far all the software and information I've described is
server-side.
Running in your server room or in a cloud somewhere.

web interface

Cool little
web map

application
with context

On the client side is a web page,
within which is a rectangular piece of active map.
In the Google and Bing and open source world the
active map is a piece of JavaScript,
but in older systems it's sometimes Flash or Silverlight.

The map either talks directly to the map server
to get live rendered data, or to the tile cache to get
static maps,
and layers them up into a zoomable map view.

raw data storage

rendering service

cache service

web map interface
Cool little
web map

application
with

context

So those are the application layers:
<x> raw data storage
<x> rendering service
<x> caching service
<x> web interface

And there are open source tools that can fulfll each of
these roles.
And each of these tools is included in OpenGeo Suite

raw data storage

rendering service

cache service

web map interface
Cool little
web map

application
with

context

PostGIS / PostgreSQL open source spatial database is a
great place for raw data storage. It widely supported by
both open source applications and ESRI.

raw data storage

rendering service

cache service

web map interface
Cool little
web map

application
with

context

GeoServer

GeoWebCache

GeoServer provides a rendering service, and other web
services for data access. It supports both support map
and feature access, web editing operations, KML, and
GeoJSON.

raw data storage

rendering service

cache service

web map interface
Cool little
web map

application
with

context

GeoServer

GeoWebCache

GeoWebCache provides a tile caching service, capable
of seeding on demand, which is useful to save space
and avoid time intensive seeding.

raw data storage

rendering service

cache service

web map interface

GeoServer

GeoWebCache

OpenLayers

OpenLayers is the web map interface that supports a
very wide range of web browsers. It supports multiple
tile sources (Google, Bing, MapQuest, OpenStreetMap,
GeoServer, MapServer, ArcGIS Server, etc, etc), it
supports vector data and web editing, point clustering,
pop-ups, all the usual bits and pieces.

GeoServerGeoWebCacheOpenLayers

is that all?

Am I leaving anything out?
Oh, yes, I very much am.

There's way more options for rendering than
GeoServer,
and more caching option than GeoWebCache,
and more web interfaces than OpenLayers.
But comparing and contrasting them all would take
hours.

GeoServerGeoWebCacheOpenLayers

And the organizations I'm going to talk about,
TriMet, DoITT and the FCC
that built spatial web sites using open source,
all used this particular open source stack: PostGIS,
GeoServer, GeoWebCache, OpenLayers.

public facing

real-time data

integrations

Beyond the software they used, the sites these
organizations built all have some commonalities, which
help explain their use of open source

<x> all integrate multiple systems
<x> all publishing real-time data, with high public
salience
<x> all publicly facing, and very high trafc because of
that desirable data

scale

Publicly facing sites with lots of trafc and constantly
changing data generate issues of SCALE, which are best
solved through

scale

horizontal replication of servers.
That's cheap with open source software, very costly
with proprietary software.
(Hopefully the parallel to Google and Facebook
and their hundreds of thousands of servers is clear.)

TriMet is the regional public transit authority for the
Portland Metro area. They handle the busses and
trains. They are the single biggest "open" story I know
of, thanks to the work of their GIS Manager Bibiana
Mchugh.

data

public web UI

trip planner

ugly!

proprietary!

expensive!

When Mchugh started, their systems included
a proprietary trip planning engine,
with a very ugly web interface,
running on expensive commercial map data.

The frst order problem was that
the public trip planning interface
was awful and the vendor was slow to improve it.

But really the problem was that the
whole system was brittle because they didn't really
control any part of it.

data

public web UI

trip planner

ugly!

proprietary!

expensive!NO CONTROL

Someone else controlled the data,
someone else controlled the trip planner,
someone else controlled the web UI,
so changes got made when only SOMEONE ELSE
.. felt like doing it.

data

public web UI

trip planner

expensive!

proprietary!

First they took control of the public face of the trip
planner,
the web UI.
they built out their own web experience,
used open source database, rendering and user
interface tools
and only called the just called the trip planner for
routing.

They ended up with a much prettier user facing
experience.
But they didn’t stop there.

In architecting the trip planner, they used open
standards for web mapping,
so that the map services could be mixed into other
applications.

map service
(WMS)

trip planner
UI

external
users

other

systems

This ended up being benefcial for the rest of TriMet,
because they could make use of the transit maps in
their own web mapping applications.
Since the services were public, they were also used by
other organizations in the Portland area as well. Many
wheels were not reinvented as a result of the open
standards architecture.

invest to raise
the data standard
for TriMet region

Then they took control of the data.
They hired interns to update the OpenStreetMap data
in the Portland TriMet region
to get to a quality standard suitable for their map.

Once the map was up to snuf, they cancelled their
commercial data subscription.

data

public web UI

trip plannerproprietary!

Finally, they took control of the trip planning algorithm
itself.
This was the riskiest part, but it paid of.
They contracted with the Open Planning Project
to polish up an open source routing engine to the
standard needed to do transit trip planning for them.

<x> Then they moved all their trip planning requests
to the open source engine.

open
standards

open
data

open
source

TriMet executed a full "open triple play":
<x> open standards architecture, allowing service
reuse across their enterprise (and indeed their region)
<x> open data use, initially investing in a common
data pool, and now reaping the rewards in free crowd-
sourced updates
<x> open source use, both building with existing open
source tools, and investing in new ones (and again
reaping benefts as other organizations also invest in
the OpenTripPlanner software)

trimet.org

you can see it all in action at TriMet.org
the trip planner, the live maps, the data on the maps
everything is open

The Federal Communications Commission is a regulatory
body, which means they both enforce rules and gather
data.

In 2008, the Congress passed the Broadband Data
Improvement Act that directed them to gather data about
access to broadband internet in the USA, and then to
publish it on an online map.

So the FCC had a legal requirement to build a web map
of broadband access.
You think it’s when the boss gives you tight deadline.
Congress wrote this web map and delivery data into the
law.

proprietary
prototype

tested

Since the map was going to go live on a date set in law,
they knew they only had one chance to get it right.

So they built a prototype, using the standard
proprietary tools, then they load tested it.

Guessing at the load they were going to get, they knew
they could not scale up the proprietary technology far
enough.

So they started again using open source.

open API
architecture

And here I want to point out that the FCC went beyond
open source in their solution.

They recognized that their broadband data was going
to be widely of interest,
and that their particular map view was not going to be
the way
everyone wanted to consume the data.

So they built their site in two halves.

The frst half, the data tier, was a data services half.

All the information in the site was published using
computer readable formats,
and web services APIs.

So when they went live with the broadband map,
they would also be able to simultaneously go live with
an open data site.

The second half, the presentation tier (which included
the map),
just consumed the data services, and presented a
human-viewable version of the data.
Maps and charts and tables and so on.

data API

feeds

web UI

reads

Because the presentation tier entirely depended on the
data tier,
they were stress testing and acceptance testing their
data tier
in the process of building their presentation tier.

The FCC site went live in 2011, and promptly exceeded
trafc projections by a factor of two, necessitating a
quick doubling of server capacity over the weekend
(unfortunately it was not cloud-deployed). But the
extra capacity had no license implications, it was just a
horizontal scaling problem.

The FCC site went live in 2011, and promptly exceeded
trafc projections by a factor of two, necessitating a
quick doubling of server capacity over the weekend
(unfortunately it was not cloud-deployed). But the
extra capacity had no license implications, it was just a
horizontal scaling problem.

The FCC site went live in 2011, and promptly exceeded
trafc projections by a factor of two, necessitating a
quick doubling of server capacity over the weekend
(unfortunately it was not cloud-deployed). But the
extra capacity had no license implications, it was just a
horizontal scaling problem.

The FCC site went live in 2011,
and promptly exceeded trafc projections by a factor
of two,
necessitating a quick doubling of server capacity over
the weekend
But the extra capacity had no license implications,
it was just a horizontal scaling problem.

broadbandmap.gov

The site is still online, being updated with new network
speed data all the time.
Everything at broadbandmap.gov is powered by open
source.

The City of New York is a really big place.
It's bigger than most state or provincial governments.
So calling it a "municipal" use case it a stretch.
They have substantial IT resources and skills to build
with.

over 50 apps

3-4 under way

3 developers

The "geo" group inside the ITT department
supports a huge number of applications, over 50,
with 3-4 under development at any time
and a staf of 3 developers.

They initially got exposed to open source the old
fashioned way:
their IT group would only support Solaris servers.
ArcIMS ran OK on Solaris,

but it was going away, and ArcGIS Server under Solaris
was very unreliable.
The immovable object met the unstoppable force.
What to do?

So they explored other options, and found GeoServer
and GeoWebCache,
and became quite happy with them.
(I heard a similar story from an IBM consultant
who was told by his boss that he could solve the
client's mapping problem
any way he liked...
As long as the solution used DB2 and AIX.
So he ended up compiling open source mapping tools
on AIX.)

ArcGIS Server

They still run a hybrid shop, however.
For some apps they generate tiles from ArcGIS, and
publish them inside open source web maps. For other
apps they use an open source stack on top of Oracle.

Open source isn’t a 100% either/or proposition,
it’s an and/also proposition.

On December 26, of 2010, New York was hit by a huge
snow storm,
and the City got a bit of a black eye for its response.

Once of the initiatives the Mayor's ofce came up with
out of that experience
was transparency about services, in particular snow
plowing.
They asked for a public map of all streets that had
been plowed,
where plows were, and what streets would be plowed
next.

So DoITT built the PlowNYC sit,
using an open source software stack
(linux, tomcat, apache, geoserver, gwc, openlayers)
over an Oracle database.

During a snow event it services 100s of thousands of
unique users.
It's been up for three years,
and is now also being internally in the command center
to monitor plow activity.

raw data storage

rendering service

cache service

web map interface

GeoServer

GeoWebCache

OpenLayers

Technically, there is nothing unique about the solution:
it's a database, a render farm, a caching tier and a web
UI.
They could build it on proprietary software too.
In fact the City of Chicago has built a similar plow
status application using proprietary.

software requisitions

technical workarounds

scaling

But the procedural barriers to success would have been
much higher:
software requisitions and approvals would have taken
more time;
technical issues that were solved very quickly with
open source would have had to be worked around or
fxes waited for;
scaling would have involved license restrictions and
more requisitions.

maps.nyc.gov/snow

New York City is still a hybrid shop,
but more and more they are building on pure open
source,
for faster development velocity.

You can see the snow status app online now,
and see it under load when it snows back East.

So,
Three levels of government (municipal, regional,
federal),
three high trafc, public facing web services,
three happy organizations.
Open source has been good to them.

But I’m not saying
open source is a panacea.
It's not for every organization.

developers
on staff

All three of those organizations had very capable
developers on staf or contract.

unusually
high load levels

All three had abnormally high requirements for trafc
on their sites.
(And all three of them actually exceeded their load
predictions when they went live.)

some prior
open source
experience

At this point,
all three of them have been using open source for a
while.

I think all three would say they were nervous at the
start,
and they experienced the steep learning curve,
but are happy with the journey they've gone on.

going exploring?

start
small

allow
time to
learn

self-
motivate

If you're thinking about exploring open source,
<x> start small, with a single application, and give it a
shot.
<x> Give your developers the space to learn and
experiment and try diferent approaches.
<x> Remember than open source doesn't have a
marketing department,
self-motivation is a key requirement.

You also have a unique opportunity this fall, to learn,
one that won't be repeated for a long time,
because FOSS4G, the international open source
geospatial conference,
is just down south in Portland.

(In case you're thinking "oh, we'll catch it next time",
the previous four locations were Sydney, Barcelona,
Denver, and Nottingham.
Next year it will be on the other side of an ocean.
Take advantage of the opportunity this year.)

Thanks very much, please ask me questions, now, or
afterwards,...

trimet.org

broadbandmap.gov

maps.nyc.gov/snow

boundlessgeo.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

