Urban Systems Ltd.

Harnessing GIS Technology in Transportation Planning

December 2004

USE OF GIS

- We have used GIS for a variety of transportation planning and engineering exercises
- Specifically USL has worked with a number of communities for:
 - Roadway Capital
 - Roadway Rehabilitation
- Recent examples include:
 - City of Kamloops TravelSmart Plan
 - Corporation of Delta Sidewalk Assessment and Implementation Strategy

TRAVELSMART

City of Kamloops

TravelSmart -Integrated Land Use and Transportation Plan

TRAVELSMART BACKGROUND

- City had experienced considerable growth
- Demands being placed on the transportation network
- Desire to retain mobility in the future

TRAVELSMART OBJECTIVES

- Develop an integrated land use and transportation strategy
- Provide clear direction for updating land use planning policies in the OCP
- Prepare a transportation plan which embraces all modes of travel, realistic mobility targets, affordability and addresses TDM
- Ensure environmental, economic development and quality of life goals are taken into account

PROJECT PHASES

JRBANSYSTEMS.

GIS

- Phase 1 program direction and guiding principles
- Phase 2 data gathering and transportation model development
- Phase 3 land use and transportation scenarios

Phase 4 - integrated land use and transportation strategy

TECHNICAL METHODOLOGY

TECHNICAL METHODOLOGY

TRAFFIC ZONES

LAND USE MAP

CHALLENGES

- BCAA does not have up-to-date information on all properties
- Finding the number of residential units in multi-family dwellings
- Getting all data to the property level
- Generating the right land use data for each property

ADVANTAGES OF GIS

- Ability to collect, store, and analyze data from a number of sources
- Ability to do building area calculations from ortho photos
- Ability to visualize data to search for inaccuracies
- Easier start up for updates
- Assisted in developing highest and best land use for future development
- Ability to use for other projects (i.e. water model)
- Easier response to evolving issues

RESULTS

- Able to reduce list of needed road improvements from \$120 M to \$14 M without compromising mobility
- Significantly changed future growth in OCP
- Has spurred action on other transportation planning/engineering exercises such as TDM for the Hospital, Bike Master Plan, Pedestrian Master Plan
- Now have a tool that can respond to changes in land use philosophy

NEXT STEPS

Yearly updates of land use data

Potential total model update in next couple of years

Corporation of Delta

SIDEWALK ASSESSMENT & IMPLEMENTATION STRATEGY

GIS METHODOLOGY

Craig Polzen GIS Specialist URBAN SYSTEMS LTD.

BACKGROUND

Delta Sidewalk Assessment Project

- advance sidewalk construction throughout the community in a systematic and objective manner.
- implementation priorities developed through this assignment will be used by Delta staff to develop future capital plans.

OBJECTIVES

- Identify sidewalk needs within Delta to achieve current standards along various classes of roadways and in key pedestrian areas;
- Establish priorities for the implementation of sidewalks based on locally-defined criteria such as safety, demand and overall contribution to the existing network of sidewalks;
- Identify improvement options and associated costs for alternative treatments;

Prepare an implementation strategy that identifies short-term, medium-term and long-term priorities.

ASSESSMENT CRITERIA

Pedestrian Generators (proximity rating)

 \succ

- Safe Routes (based on Delta's 'Safe Routes to School' Program) Transit Stops (proximity rating)
- **Roadway Class (based on Delta's rating)**
- Traffic Volume (based on Delta's Research) Posted Speed (based on Delta's rating)
 - Network Contribution (based on spatial evaluation)

ASSESSMENT CRITERIA

1. Pedestrian Generators

Derived from: Zoning, Field Visits, Phone Book/Internet Searches

Community Shopping Areas Highway Commercial Zones Shopping Mall/Plaza Local Commercial Zones Major Office Buildings Major Parks Neighbourhood Parks Recreation Centres Secondary Schools Seniors' Homes Places of Worship Industrial Sites Hospital/Health Centre *Proximity Analysis: 0-250 m 250-500 m 500-750 m 750-1000 m*

SECONDARY SCHOOL BUFFERS

NEIGHBOURHOOD PARK BUFFERS

RECREATON CENTRE BUFFERS

TRANSIT STOP BUFFERS

ROAD CENTERLINE DATA

ROAD CENTRELINE ATTRIBUTES

- Sidewalk Rating centreline clipped by technician based on sidewalk dataset
- Transit Stop/Pedestrian Generator assigned by spatial selection
 - All other attributes assigned by technician to segments of road centreline dataset

Sidewalk Rating	Safe Routes to School	Road Class	Traffic Volume	Posted Speed	Network Contribution	Transit Stop	Pedestrian Generator
0	1	5	4	3	2	4	3
1	2	3	5	3	2	5	4
2	2	2	4	4	4	2	5

SUMMARY

Sidewalk Prioritization Strategy

- Priority Rating of 1 to 5 from GIS Analysis
- Implementation Options with Associated Costs

 \succ

>

QUESTIONS?

<u>cpolzen@urban-systems.com</u> <u>dhoulihan@urban-systems.com</u>